

Caspase-3 Assay Cat. No. 8228, 100 tests

Introduction

Caspase-3 is a member of caspases that plays a key role in mediating apoptosis, or programmed cell death. Upon activation, it cleaves a variety of cellular proteins, causing morphological and functional changes to cells undergoing apoptosis. The ScienCellTM Caspase-3 Assay provides a quick and convenient method to measure caspase-3 activity. The colorimetric assay is based on the spectrophotometric detection of the chromophore p-nitroanilide (pNA) after its cleavage by caspases-3 from the labeled substrate acetyl-Asp-glu-Val-Asp p-nitroanilide (Ac-DEVD-pNA). The concentration of pNA is measured by absorbance at 405 nm. The caspase-3 activity can be calculated as µmol of pNA released per minute per milliliter of cell lysate.

Kit Components

Cat. No.	# of vials	Reagent	Amount	Storage
8228a	1	Lysis Buffer	10 ml	2-8°C
8228b	1	DTT Stock (1 M)	0.2 ml	-20°C
8228c	1	10× Assay Buffer	3 ml	2-8°C
8228d	1	Caspase-3 Substrate (2 mM)	1 ml	-20°C, dark
8228e	1	pNA Standard (40 mM)	20 μl	-20°C

Quality Control

ScienCellTM Caspase-3 Assay is applied to various concentration of active recombinant human caspase-3 (1.5 units, 5 units and 15 units per 100 μ l reaction) with (2×10⁻³ μ mol) and without caspase-3 inhibitor, according to Table 1. After incubation at 37°C for 2 hours, absorbance at 405 nm is read. Results show that the OD_{405nm} increases as the concentration of caspase-3 increases, while 2×10⁻³ μ mol of caspase-3 inhibitor inhibits the activity of up 15 units of caspase-3 effectively, which provides a negative control for the assay (Figure 1).

Procedures

A. Preparation of reagent

- 1. Aliquot and store DTT Stock (1 M) at -20°C.
- 2. Add appropriate volume of 1 M DTT into the Lysis Buffer to a final concentration of 5 mM (dilute 200×) before each use. Lysis Buffer with 5 mM DTT is stable for less than a week at 2-8°C.
- 3. Add appropriate volume of 1 M DTT into the 10× Assay Buffer to a final concentration of 50 mM (dilute 20×) before each use. 10× Assay Buffer with 50 mM DTT is stable for less than a week at 2-8 °C.

B. Preparation of pNA standard

1. Dilute 0.3 ml of $10 \times$ Assay Buffer with 50 mM DTT 10 times with DI H₂O to make 3 ml of working Assay Buffer.

- 2. Add 3 μl of 40 mM pNA stock to 297 μl of working Assay Buffer to make a 300 μl solution of 400 μM pNA.
- 3. Obtain 8 test tubes, add 300 µl of working Assay Buffer into each tube and label them #1 through #8
- 4. Add 300 μl of the 400 μM pNA into tube #1 and mix well to get the 200 μM pNA standard.
- 5. Transfer 300 μ l of 200 μ M pNA standard from tube #1 to tube #2 and mix well to get the 100 μ M pNA standard.
- 6. Repeat step 5 for tubes #3-7 to serially dilute the pNA standards. Do not add any pNA to tube #8, which serves as the blank.
- 7. Obtain a 96-well plate, add 100 μl/well of each pNA standard into the 96-well plate in triplicate to generate 0.02 μmol to 3.125×10⁻⁴ μmol/well standard, according to the following plate format:

	#1	#2	#3	#4	#5	#6	#7	#8
A	0.02 μmol	0.01 µmol	5×10 ⁻³ μmol	2.5×10 ⁻³ μmol	1.25×10 ⁻³ μmol	6.25×10 ⁻⁴ μmol	3.125×10 ⁻⁴ μmol	Blank
В	0.02 μmol	0.01 µmol	5×10 ⁻³ μmol	2.5×10 ⁻³ μmol	1.25×10 ⁻³ μmol	6.25×10 ⁻⁴ μmol	3.125×10 ⁻⁴ μmol	Blank
С	0.02 μmol	0.01 µmol	5×10 ⁻³ μmol	2.5×10 ⁻³ μmol	1.25×10 ⁻³ μmol	6.25×10 ⁻⁴ μmol	3.125×10 ⁻⁴ μmol	Blank

8. Read samples at 405 nm on a microtiter plate reader. Plot the standard curve of OD_{405nm} vs. μ mol of pNA (e.g. Figure 2). Determine the equation and R^2 value of the trend line.

C. Preparation of cell lysate

- 1. Induce apoptosis in cells by desired method.
- 2. Harvest cell pellet for each sample. Wash the cell pellet once with PBS. Count the number of cells.
- 3. Resuspend cells in pre chilled Lysis Buffer with 5 mM DTT at 1×10^7 cells/100µl; leave the cells on ice for 15 minutes with gentle agitation.
- 4. Centrifuge the lysed cells at $14,000 \times g$ in pre-cooled centrifuge for 3 minutes, transfer the supernatant to a fresh tube and discard the pellet. Cell lysate can be stored at -70 °C or used immediately for caspase-3 measurement.

D. Assay procedure

- 1. Sequentially add 20 μl of cell lysate, 10 μl of 10× Assay Buffer with 50 mM DTT, 60 μl of DI H₂O and 10 μl of 2 mM Caspase-3 Substrate to each well of a 96 well plate. Prepare a couple of blank wells by mixing 20 μl of Lysis Buffer with 5 mM DTT, 10 μl of 10× Assay Buffer with 50 mM DTT, 60 μl of DI H₂O and 10 μl of 2 mM Caspase-3 Substrate in each well of the 96 well plate. Incubate at 37°C for 2-4 hours or until a yellowish color is developed. Record the time of reaction in minutes.
- 2. Read samples at 405 nm on a microtiter plate reader.

E. Calculation

1. Subtract the averaged OD_{405nm} of the blank wells from each of the sample well to get the calibrated OD_{405nm} values of the sample wells. Suppose the equation of the trend line of the pNA standard

curve is y = Ax + B, calculate the μ mol of the pNA released in each sample well as follows:

$$pNA = \frac{OD_{405nm} - B}{A}$$

2. Calculate the caspase-3 activity in μ mol pNA released per min per ml of cell lysate as follows:

Activity,
$$\mu$$
 mol pNA /min /mL = $\frac{\mu$ mol of pNA $0.1mL$ (ly sate volume) \times t

Where t is the reaction time in minutes.

Table 1. Reaction scheme for capase-3 positive control with and without inhibitor.

	Caspase-3	Caspase-3 Substrate 2 mM	Caspase-3 Inhibitor 0.2 mM	10× Assay Buffer with 50 mM DTT	DI H ₂ O
	1.5 µl	10 μl		10 μl	78.5 µl
Caspase-3 positive control	5 µl	10 μl		10 μl	75 µl
without inhibitor	15 µl	10 μl		10 μl	65 µl
	1.5 µl	10 μl	10 μl	10 μl	68.5 μl
Caspase-3 positive control	5 µl	10 μl	10 μl	10 μl	65 µl
with inhibitor	15 µl	10 μl	10 μl	10 μl	55 µl

Figure 1. ScienCellTM Caspase-3 Assay kit applied to various amount of caspase-3 positive control with and without inhibitor (Table 1).

Figure 2. Standard curve of OD_{405nm} vs. pNA in μ mol.